Cut through the noise on the 2-metre band! Put a really whopping signal out with this 100W afterburner, the biggest kit amplifier currently available!

Most VHF amateur band transceivers for mobile use feature power outputs of between 2W and 15W. That’s fine for most situations, but how many times have you wished for more power to trigger a distant repeater or to put out a more readable signal?

If that’s the case, then this new 100W 144MHz linear amplifier is the answer. It’s available from Dick Smith Electronics as a complete kit of parts, boasts 120W continuous output power (15W input), and is easy to build and align.

In use, the amplifier is interposed between the transceiver and the antenna. There are just two front panel controls: a switch to select between FM and SSB/CW operating modes; and an operate/standby switch.

An on-air lamp and a relative output meter complete the front panel line-up. The back panel carries the input and output sockets.

The operate/standby switch basically functions as an on/off switch. In the operate position, the amplifier is switched into circuit whenever the PTT button on the transceiver is pressed.

When the PTT button is released, the amplifier is switched out and the transceiver is connected to the antenna socket (on the back of the amplifier) via internal relay contacts.

In the standby position, the amplifier is switched off and the transceiver is connected, via the relays, to the antenna socket for both receive and transmit. This operating mode is handy for making local contacts, or in other situations where the high output power of the amplifier is not required.

Unlike some commercial units, this unit uses low-loss coaxial relays for RF switching. These keep the insertion loss in standby mode to just 0.6dB over the range 144-148 MHz.

By contrast, many commercial units exhibit an insertion loss of 1.5dB or more due to the widespread use of cheap relays. This plays havoc with noise figures on receive and equates to about 7W out for 10W in when operating in standby mode.

How it works
The circuit is quite straightforward and consists of two parallel RF power transistors, Q1 and Q2, operating in class B mode.

Starting at the input, the RF signal is fed via contacts of relay RLA to an input matching network consisting of L1 and trimmer capacitors TC3 and TC4. From there, it is capacitively coupled to the bases of Q1 and Q2 which are Mitsubishi 2SC2694 devices rated at 75W each.

Resistors R5 and R6 and diodes D1 and D2 provide bias for the transistor stages. This bias, which is simply the forward voltage drop of each diode, is applied to the transistor bases via RF.
choke RFC1 and RFC2. The resulting quiescent current through each device is of the order of 150-200mA.

In practice, diodes D1 and D2 are thermally coupled to the power transistors to prevent thermal runaway. Here's how the scheme works: As the transistors get hotter, the diodes also get hotter. As a result, the forward voltage across the diodes drops and this reduces the bias on the transistors. Thus, the transistors are automatically throttled back as they become hotter.

The collector outputs of the transistors are coupled to two tuned circuits consisting of L5, TCI and L6, TC2. The amplified signal is then fed to C38 and C39, and applied to the output socket via a coaxial relay RLC and a 50Ω stripline.

Note that the output tuned circuit also shows capacitors C41 and C42. These are fitted initially but may have to be removed later during alignment.

C0ils L2, L3 and L4 and their associated capacitors provide decoupling for the 13.8V supply rail to the collectors of Q1 and Q2. Similarly, C9-C24, FB1, FB2, RFC1 and RFC2 decouple the base bias voltages.

**Relay switching**

Q3, Q4 and Q5 form the relay switching circuit. This switches the amplifier into circuit between the transceiver output and the antenna socket on transmit, and switches the amplifier out of circuit during receive.

The circuit works like this: During receive, Q3 is off and Q4 is on. Thus, relay driver transistor Q5 is also off and the transceiver is connected to the output socket via relay contacts RLA and RLC.

When the transmit button is pressed, part of the signal passes via C1, is rectified by D3 and charges C2. This provides base bias to Q3 which turns on, turning Q4 off and Q5 on. Q5, in turn, drives relays RLA and RLC to switch the amplifier into circuit.

At the same time, power is supplied to the on-air lamp (L1) via relay contacts RLB. Lamp L2 provides illumination for the power meter and is on while ever S1 is closed. S1 allows the amplifier to be switched to standby mode while D4 protects Q5 from back EMF when the relays turn off.

When the transmit button is released, the relays remain on for a short time until C3 charges sufficiently to turn Q4 on. Switch S2 considerably extends the relay dropout time for SSB and CW by switching out R7. This is necessary to prevent relay chatter since there is no carrier in SSB mode and only an intermittent carrier in CW mode.

**Power meter**

The relative power meter circuit monitors the RF energy in the output tank circuit. Here's how it works:

Part of the energy in the tank circuit is coupled into the anode circuit of D6 via two parallel tracks on the underside of the PC board. This signal is then rectified by germanium diode D6, filtered by C4 and applied to the meter movement via calibration trimpot VR1.

Note that D6 must be germanium type to ensure low forward voltage.

**Construction**

Construction is straightforward with most of the parts mounted on a double-sided PC board coded ZA-1661 and measuring 128 x 230mm. This is mounted on a large finned heatsink which forms the top of the case and provides heatsinking for the two RF power transistors.

![Component Overlay](image-url)

**Fig. 1: Parts layout and wiring diagram.** Follow this diagram exactly when installing the parts and keep all leads as short as possible.
Fig. 2: This diagram shows the locations of the through-board links and brass shims (see text).

Fig. 3: The ceramic capacitors are all soldered to the top of the board, except for C1 which is mounted in the conventional manner. Trim the leads as shown in the diagram.

A black anodised base and two end panels complete the case.

To make construction really easy, Dick Smith Electronics will be supplying the metalwork and heatsink predrilled. In addition, the front panel features white screened lettering on a black background to give the unit a really professional appearance.

Begin construction by fitting the through-board links to the board as shown in Fig. 2. There are 19 through-board links in all and these should be installed using 1.6mm diameter tinned copper wire.
With the links installed, the next step is to fit the brass shims in the positions indicated. These will have to be cut from the 100 x 100mm sheet provided.

Begin by cutting eight 4 x 12mm strips, one 10 x 53mm strip and one 20 x 40mm strip. This done, fold each strip in half and fit them to the PC board as shown in Fig.2. Note that the shims must be soldered to both sides of the PC board.

The real job of installing the parts on the PC board can now be tackled. Note that because the circuit works at VHF, all leads must be kept as short as possible. For this reason, most of the components are soldered to the top of the PC board.

This means that the layout diagrams must be followed carefully when installing the parts. In most cases, there are no holes to guide the constructor.

Some parts are, however, mounted conventionally. Where possible, their leads must be soldered on both sides of the board.

Fig.1 shows the parts layout on the PC board. No particular order need be followed when assembling the board but we suggest that the resistors, capacitors (but not C9-C16), links and diodes (but not D1 and D2) be installed first. Fig.3 shows how the ceramic capacitors are mounted (except for C1 which is mounted in the conventional manner), while Fig.4 shows the details for Link 1 and Link 2.

Note that resistors R5 and R6 become quite warm during operation and should be stood off the board by about 5mm (see Fig.6). Capacitors C9-C13 are installed after the two RF power transistors are installed and should be left out of circuit for the time being.

The trimmer capacitors can be in-

This close up view shows how link L1 and its adjacent trimmer capacitors are mounted. The power cables are secured using a cord-grip grommet.

Fig. 7: coil winding details. The coils are all air-wound using metric drill bits as the coil formers.
Note: The inline fuse holder is placed in series with the positive lead of the power cable. The above diagram shows correct assembly details and placement of each item. Below is a diagram showing the completed fuse holder and how it sits on the power cable.

**SPECIFICATIONS**

- **Power Output**: 120W (max.) CW for 15W input at 146MHz (see Table 1)
- **Current Consumption**: 15A (see Table 1)
- **Insertion Loss**: 0.6dB from 144-148MHz
- **Input SWR**: less than 1.2:1 from 144-148MHz
- **Harmonic Suppression**: second: −55dB (same as exciter); third: −65dB (same as exciter)
- **Intermodulation Suppression**: better than −35dB at 200W PEP on SSB two tone signal (500Hz & 2400Hz); exciter −38dB (i.e., 3dB degradation)
The circuit uses two parallel RF transistors, Q1 and Q2, operating in class B mode. Q3-Q5 provide relay switching.

Coil winding

The coils for the 144MHz Power Amplifier require only a few minutes work. With the exception of L1, they are all wound using various grades of copper wire. A set of metric drill bits can be used as the coil formers.

The two RF transistors are bolted directly to the heatsink and their leads soldered to the brass shims. Note mounting details for D1 and D2.
Fig. 7 shows the winding details. Be sure to use the correct grade of wire for each coil and don't forget to install a ferrite bead on one leg of both RFC1 and RFC2. Solder each coil to the PC board as it is wound and secure the windings of RFC1 and RFC2 using epoxy adhesive.

Note: on the prototype, short lengths of spaghetti sleeving were covered with adhesive and pushed into the RFC1 and RFC2 windings.

**RF transistors**

Installing the RF transistors requires a number of steps involving assembly and disassembly of the PC board onto the heatsink. Here's what to do:

1. Position the sheet of “elephant-tide” insulation supplied with the kit on the mounting surface of the heatsink and temporarily secure the board using machine screws and nylon washers. The latter (three per screw) are used as standoffs between the PC board and the heatsink.

2. Mark out the transistor mounting positions, then remove the board and make two square cutouts in the insulating material so that the RF transistors can make direct contact with the heatsink.

3. Re-install the PC board on the heatsink.

4. Carefully trim the four outside legs of the RF transistors by about 3mm (see Fig. 8). This done, bolt the transistors to the heatsink and solder their legs to the PC tracks and brass shims. Fig. 9 shows the details.

Note that an earth lug must be fitted under each of the four mounting screws. Solder these to the ground plane on the PC board.

5. Install capacitors C9-C16 and remove the PC board from the heatsink.

**Final assembly**

Now for the final assembly. This mainly involves installing the remaining hardware and wiring up the front and rear panels (see Fig. 1). Secure the meter to the front panel using epoxy adhesive.

The two power supply leads must be run using the heavy-gauge insulated cable supplied. Note that the positive lead should be fitted with the 25A inline fuse supplied with the kit. The two leads exit through a cable restraint fitted to the rear panel.

The remainder of the wiring can be run using light-duty hookup wire. This should be bound into a wiring loom using cable ties as shown in the photographs. Note that one of the leads to Si must be soldered on both sides of the PC board.

With the wiring completed, smear heatsink compound on the underside of the RF transistors and reinstall the PC board on the heatsink. The two end panels can now be secured to the heatsink using the large self-tapping screws supplied and the meter lamp mounted in position.

The accompanying photograph shows how the meter lamp is mounted. It is pushed into a rubber grommet and supported by a short length of tinned copper wire which is soldered to the PC board. The lamp is positioned over the meter by bending the copper wire.

Connections between the PC board and the rear panel sockets should be made using the brass shims and short lengths of tinned copper wire.

The input and output connections each use a piece of brass shim measuring 4 x 15mm, with an extension lug to go through the PC board for soldering. The other ends are connected to the socket terminals with a short piece of 1.5mm tinned copper wire, as shown in the photograph.

The two earth straps are made from brass shim. The straps should be cut so as to clear the input and output connections. They are secured to the panel by the socket flanges, while the other ends of the straps should be soldered to the PC board.

Construction can now be completed by installing diodes D1 and D2. Apply a generous coating of heatsink compound to the tops of the RF transistors before soldering the diodes into circuit. Arrange the diodes so that their bodies are in contact with the transistors to ensure good thermal conduction.

**Alignment**

This is quite a straightforward process but you do need access to some test equipment: (1) a multimeter, (2) a 100W dummy load (eg, DSE Cat. No. D-71011); (3) an SWR meter; (4) a 0.5-IW VHF transceiver; and (5) an RF power meter (optional).

Before commencing the alignment, there are a few precautions that must be observed. First, always use an insulated alignment tool when making adjustments. Second, keep your fingers away from the coils and the PC pattern to prevent RF burns. And third, do not initially apply full drive to the amplifier, or damage may occur.

The step-by-step alignment procedure is as follows:

1. Connect the output of the amplifier to the dummy load.

2. Connect the amplifier to a 13.8V 15A power supply (eg, the VK Powermaster, EA, March 1984 or a car battery).

3. Switch the amplifier to operate mode and FM. The relays should turn on and then drop out. Check that the current consumption is about 50mA at this point (due mainly to the meter lamp).

4. Temporarily connect the +13.8V supply rail to the cathode of D3 (base of Q3). Check that the relays all operate and that the current consumption rises to about 1.2A. If the current is greater than 2A, switch off and check for wiring errors.

5. Remove the power supply connection to D3 and set trimmer TC4 to half mesh.

6. Connect the 0.5-IW 2-metre transceiver to the amplifier input with the SWR meter in series. Note: do not use a transceiver with a larger output at this stage.

7. Set the transceiver to 146MHz (ie, to the centre of the band), operate the PTT switch and adjust TC3 for lowest reflected power (SWR). This done, ad-
just TC4 for lowest SWR and check the
SWR at the band edges.
Repeat the adjustments until the
SWR is less than 1.2:1 over the entire
band.
(8) Remove the SWR meter and con-
nect the transceiver directly to the
amplifier unit. Where available, connect an
RF power meter to the output. Note:
keep the dummy load if the meter is not
a terminating type.
(9) Screw the adjusting screws of TC1
and TC2 down until they are finger-
tight.
(10) Operate the transceiver PTT
switch and alternately back off TC1
and TC2 a fraction of a turn each for
maximum reading on the power meter.
The idea here is to get the two output
tank circuits to resonate with TC1 and
TC2 set to about the same value.
Initially, C41 and C42 should be in-
circuit. Remove them if TC1 and TC2
cannot be conveniently adjusted to
bring the tank circuits to resonance (ie.
if the adjusting screws become loose).
(11) If no RF power meter is avail-
able, use the output meter built into the
amplifier. Use VR1 to adjust the meter
sensitivity if the reading is initially too
low to register.
(12) Connect a 5W 2-metre trans-
ceiver to the input, operate the PTT
switch and re-adjust TC3 and TC4 for
maximum output. This done, re-adjust
TC1 and TC2 but make sure that their
values are kept as equal as possible.
Note: a 10-15W transceiver can be
used for this step, provided that you
proceed with caution. Operate the PTT
switch for short periods of time only (a
few seconds) when making adjustments
to prevent damage to the amplifier.
(13) Remove the drive and check that
the current consumption drops to
around 50mA when the relays drop out.
(14) Switch the amplifier to SSB and
apply drive (ie. a carrier) until the
relays pull in. Remove the drive and
check that the current consumption
drops to around 1.2A before the relays
drop out, then to about 50mA.
(15) Connect a 10-15W transceiver
and repeat step 12 to ensure maximum
output. Adjust trimpot VR1 so that the
amplifier meter reads full scale at maxi-
mum drive. That completes the align-
ment.

**Operation**

The amplifier can be driven by any
2-metre transceiver with an output
power of up to 15W. Do not apply
more than 15W of drive, otherwise the
RF power transistors will be over-driven
and may burn out.

Similarly, the RF transistors may also
burn out if the amplifier is driven into
mismatched loads (SWR greater than
2:1). Check the antenna SWR before
connecting up the amplifier and always
use good-quality 50Ω coaxial cable for
the input and output connections.

Finally, it is normal for the output
power of the amplifier to drop by about
10% after a few minutes of continuous
operation due to the action of the com-
ensation diodes (D1 and D2). ●

The rear panel accommodates the two SO-239 sockets and the cord-grip grommet. Use
good-quality 50Ω coax for all input and output connections.

The rear panel sockets are "wired" using the brass shim material and short lengths of 1.5mm tinned copper wire.
# Parts List

All resistors are 1/4W unless specified

## Resistors

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x</td>
<td>2.2R</td>
<td>Resistor(R1,R3)</td>
</tr>
<tr>
<td>2x</td>
<td>10R</td>
<td>Resistor(R2,R4)</td>
</tr>
<tr>
<td>1x</td>
<td>100R</td>
<td>Resistor(R12)</td>
</tr>
<tr>
<td>2x</td>
<td>1K</td>
<td>Resistor(R10,R11)</td>
</tr>
<tr>
<td>2x</td>
<td>10K</td>
<td>Resistor(R7,R9)</td>
</tr>
<tr>
<td>1x</td>
<td>100K</td>
<td>Resistor(R8)</td>
</tr>
<tr>
<td>2x</td>
<td>33R</td>
<td>Resistor(R5,R6)</td>
</tr>
<tr>
<td>1x</td>
<td>10K</td>
<td>Trimpot (VR1)</td>
</tr>
</tbody>
</table>

## Capacitors

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>1pF</td>
<td>Ceramic Cap 50V(C1)</td>
</tr>
<tr>
<td>4x</td>
<td>100pF</td>
<td>Ceramic Cap 50V(C5-C8)</td>
</tr>
<tr>
<td>9x</td>
<td>.001uF</td>
<td>Ceramic Cap 50V(C4,C19,C20,C22,C24,C30,C31,C35,C36)</td>
</tr>
<tr>
<td>1x</td>
<td>10uF</td>
<td>Electro Cap 25V RB(C2)</td>
</tr>
<tr>
<td>1x</td>
<td>100uF</td>
<td>Electro Cap 25V RB(C3)</td>
</tr>
<tr>
<td>4x</td>
<td>100uF</td>
<td>Electro Cap 25V RB(C17,C18,C32,C33)</td>
</tr>
<tr>
<td>3x</td>
<td>12pF</td>
<td>Silver Mica 500V(C40-C42)</td>
</tr>
<tr>
<td>16x</td>
<td>47pF</td>
<td>Ceramic 500V(C9-C16,C21,C23,C26-C29,C34,C37)</td>
</tr>
<tr>
<td>3x</td>
<td>100pF</td>
<td>Silver Mica 500V(C25,C38,C39)</td>
</tr>
<tr>
<td>2x</td>
<td>4-40pF</td>
<td>Trimcap(TC1,TC2)</td>
</tr>
<tr>
<td>2x</td>
<td>5-70pF</td>
<td>Trimcap(TC3,TC4)</td>
</tr>
</tbody>
</table>

## Semiconductors

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>22uH</td>
<td>RF Choke(RFC3)</td>
</tr>
<tr>
<td>1x</td>
<td>TIP31B</td>
<td>Transistor(Q5)</td>
</tr>
<tr>
<td>2x</td>
<td>BC547</td>
<td>Transistor(Q3,Q4)</td>
</tr>
<tr>
<td>1x</td>
<td>OA91</td>
<td>Diode(D6)</td>
</tr>
<tr>
<td>2x</td>
<td>IN914</td>
<td>Diode(D3,D4)</td>
</tr>
<tr>
<td>2x</td>
<td>IN4002</td>
<td>Diode(D1,D2)</td>
</tr>
<tr>
<td>1x</td>
<td>IN5404</td>
<td>Diode(D5)</td>
</tr>
<tr>
<td>2x</td>
<td>FX115</td>
<td>Ferrite Bead(FB1,FB2)</td>
</tr>
<tr>
<td>2x</td>
<td>2SC2694</td>
<td>Transistor(Q1,Q2)</td>
</tr>
</tbody>
</table>

## Hardware

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>Edge Meter (M)</td>
<td></td>
</tr>
<tr>
<td>1x</td>
<td>18V Meter Lamp (L2)</td>
<td></td>
</tr>
<tr>
<td>1x</td>
<td>12V Lamp Bezel(L1)</td>
<td></td>
</tr>
<tr>
<td>1x</td>
<td>12V DPDT Relay(RLB)</td>
<td></td>
</tr>
<tr>
<td>2x</td>
<td>Coaxial Relay(RLA,RLC)</td>
<td></td>
</tr>
<tr>
<td>2x</td>
<td>SPDT Toggle Switch(S1,S2)</td>
<td></td>
</tr>
</tbody>
</table>

## Miscellaneous

Heatsink, elephant hide insulation, brass shim, auto cable(red), auto cable(blk), case, enamel copper wire, tin copper wire, rainbow cable, grommet, cable tie, screws, nuts & washers, spaghetti tubing, solder, nylon washers, cable clamp/grommet, sockets, PCT, solder lugs, fuse & holder,
### Table 1

<table>
<thead>
<tr>
<th>Input power (watts CW)</th>
<th>Power output (watts CW)</th>
<th>Current consumption (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2W</td>
<td>43W</td>
<td>9A</td>
</tr>
<tr>
<td>3W</td>
<td>55W</td>
<td>10A</td>
</tr>
<tr>
<td>4W</td>
<td>66W</td>
<td>11A</td>
</tr>
<tr>
<td>6W</td>
<td>85W</td>
<td>12A</td>
</tr>
<tr>
<td>7W</td>
<td>90W</td>
<td>12.5</td>
</tr>
<tr>
<td>8W</td>
<td>98W</td>
<td>13A</td>
</tr>
<tr>
<td>9W</td>
<td>100W</td>
<td>13.2A</td>
</tr>
<tr>
<td>10W</td>
<td>110W</td>
<td>14A</td>
</tr>
<tr>
<td>15W</td>
<td>120W</td>
<td>15A</td>
</tr>
</tbody>
</table>

### Table 2

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Power output (watts CW)</th>
<th>Current consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>110</td>
<td>14.0A</td>
</tr>
<tr>
<td>145</td>
<td>110</td>
<td>14.0A</td>
</tr>
<tr>
<td>146</td>
<td>110</td>
<td>14.0A</td>
</tr>
<tr>
<td>147</td>
<td>110</td>
<td>13.5A</td>
</tr>
<tr>
<td>148</td>
<td>110</td>
<td>13.5A</td>
</tr>
</tbody>
</table>

Note: all readings in Table 1 and Table 2 taken with 13.8V supply.