

532 Improved Medium Range Log-Periodic Antenna

The TCI Model 532 antenna is specifically designed to serve medium range circuits from 350 to 2600 kilometers (230 to 1600 miles) and will provide secondary coverage for short (0 kilometer) and long range (over 2600 kilometers) communications. The Model 532 antenna utilizes the Clamped Mode* concept which extends the radiating aperture, thus increasing the broadside gain and decreasing the azimuthal beamwidth. (Upon request, your TCI applications engineer can provide additional information on the Clamped Mode concept.) Because of the narrower azimuthal beamwidth, a broader elevation pattern can be tolerated and still maintain acceptable gain. Consequently the broad elevation patterns permit the long range communications as well as medium range circuits. At the lower frequencies, where high angle radiation is necessary for short range communications, the Model 532 provides over 4 dBi gain directly overhead. At the higher frequencies where low angle radiation is necessary for long range communications, the gain at 10° is over 13 dBi.

The Model 532 antenna requires only a single tower for support, thereby decreasing installation costs, maintenance costs, and the required land area. No fiberglass assemblies are used in the catenary and support structure. Alumoweld wire, broken where necessary with ceramic fail-safe insulators, is used instead to provide long service life. Because of these cost saving features, the Model 532 will prove to be the most economical antenna to install, use and maintain.

- Optimum performance for medium range circuits
- Useful performance for short and long range circuits
- Full 2-30 MHz coverage
- Single tower support for reduced installation and maintenance costs
- High power gain

Five optional low cut-off frequencies are available in the 532 family. TCI's applications engineering staff can help you establish exactly the lowest frequency required. This analysis frequency results in choosing a significantly smaller and less expensive antenna, and concurrent savings on land and installation costs.

Specifications

PolarizationHorizontal VSWR2:1 maximum

Environmental......Designed in accordance with EIA **Performance** Specification RS-222C for loading of

225 km/h (140 mi/h) wind, no ice,

12 mm (1/2") radial ice

Optional: 160 km/h (100 mi/h), no ice 96 km/h (60 mi/h) wind, 12 mm (1/2")

radial ice

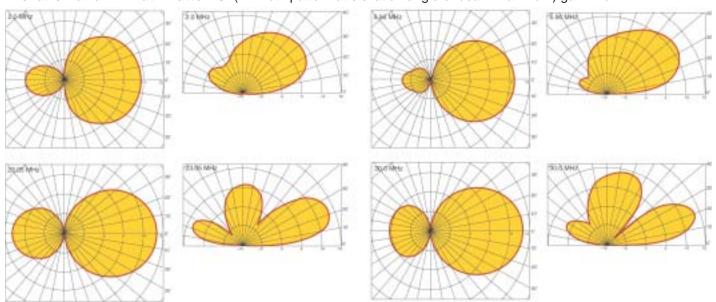
Front Support Pole Customer supplied, 7.62 m (25 ft.),

Class 2

Gain & Pattern Data

Freq.	Lower Half Power Point	Nominal Take-off Angle	Upper Half Power Point	Front- to-Back Ratio	Gain Relative to Isotropic	Azimuthal Beamwidth between Half-Power Points
2.0	19°	40°	73°	9.3 dB	9.3 dBi	80°
2.88	19°	38°	70°	15.7 dB	10.7 dBi	70°
5.56	18°	39°	67°	14.2 dB	11.2 dBi	61°
23.05	12°	24°	37°	10.5 dB	13.5 dBi	55°
28.46	10°	20°	32°	18.7 dB	13.7 dBi	55°
30.0	10°	20°	31°	13.4 dB	13.4 dBi	55°

Size


Model	Frequency	Height		Length		Width	
Number	Range	ft.	mtr.	ft.	mtr.	ft.	mtr.
532-1	2-30 MHz	225	69	500	152	660	201
532-2	3.8-30 MHz	121	38	300	91	360	110
532-3	5.75-30 MHz	81	25	192	59	240	73
532-4	3-30 MHz	149	45	357	109	450	137
532-5	4.7-30 MHz	101	30	250	76	295	90

Power & Impedance Data

· ono: a impodance zata						
Model Number	Input Impedance	Power Handling Capability	Connector			
532-N-02	50 ohms	Receive	Type N Female			
532-N-03	50 ohms	10 kW Avg /	1-5/8" EIA Female			
500 11 04		50 kW PEP	0.4/07/514/5			
532-N-04	50 ohms	25 kW Avg / 50 kW PEP	3-1/8" EIA Female			
532-N-06	50 ohms	1 kW Avg/	Type N Female			
002 11 00	00 011110	2 kW PEP	Typo IVI omaio			
ı	I	I	1			

Elevation and Azimuth Patterns (Azimuth pattern at elevation angle of beam maximum) gain in dBi

