WJ-8711 HF Receiver

DSP Description and
Fundamentals of Operation

Sept. 30, 1991
Robert A. Rice



Table of Contents

INTRODUCTIOCN
FUNCTIONAL DESCRIPTION

2.1

Initialization

Input

Frequency Translation to Baseband
Decimation by 4

Fine Tuning

Decimation by 2 Stages

Minimun Rate Processing

2.7.1 IF Filtering
2.7.2 Internal Gain Control
2.7.3 Demodulation - AM, FM, ISB

Interpclation by 2 Stages (IF and Audio)
Interpolation by 4 (IF and Audio)
Frequency Translation to 25kKhz

Special Demodulation Modes - USB, LSB, CW
Output

Special Functions

2.12.1 RF Gain Control
2.12.2 Noise Blanking

2.12.3 Signal Strength
2.12.4 Squelch

UTILITIES

3.1
3.2
3.3

Digital Filter Generation
EPROM Generation
8711BUG iﬂotorola DSPBUG)

Lo e e I e LR RV R 5 [ < i B



1. INTRODUCTION

This document describes the functional operation of the
WJ-8711 DSP software. It also includes a brief description
of the various utilities that are useful in-developing or
medifying the code.

There are various references that will aid in the
understanding of the overall progranm. These references
include but are not limited to:

1} Motorola DSP56001 User’s Manual.

2) Motorola DSP56001 Advance Information.

3) Motorola APP NOTE: Digital Sine Wave Synthesis
Using the DSP56001.

4) Motorola APP NOTE: Fractional and Integer Arithmetic
Using the DSP56001. .

5) Proceedings of the IEEE, Vol. 69, No.3, March 1981:
Interpolation and Decimation of Digital Signals - A
Tutorial Review.

Additionally, there are numerous illustrations that are
referred to throughout the text. They are included at the
end of this document.

2. FUNCTIONAL DESCRIPTION

The following functional description is based on the Top
Level DSP Block Diagram (Fig.l). Each functional block is
described in the sections that follow. It is important to
note that the block diagram is more or less a data flow
rather than a time flow description. Numerous sampling rate
changes (decimation and interpolation) require the execution
cf specific filters at specific times. This means the
switches that are associated with the decimation and
interpolation filters can not be thought of as static
switches. Instead, they are dynamically changing as a
function of the number of data points that have been
processed.

The basic concept of the processing is as follows. The
input data which represents the received signal at a 25Khz
center fregency is quadrature basebanded and decimated to an
appropriate minimum sampling rate. It is at this minimunm
sampling rate (MSR) that the IF filtering, internal gain
control, and demodulation occur. The filtered IF and
demodulated audio signal are then interpolated back up to
the output sampling rate. In the process the IF is also
translated back up to a 25Khz center frequency.

The basic structure of the processing is as follows. The
DSP executes a wait loop until data is available to process.
The wait loop and/or data processing can be interrupted from



one of two sources. They are the I/0 routines and a free
" running interrupt which will be referred to as IRQB. The
I/0 routines serve as the interface between the input/output
data and the main processing routine. The IRQB interrupt
occurs at a relatively slow rate (1.28 msec) and is used to
perform functions that are required at a much lower rate
than the MSR.

2.1 Initialization

Initialization can be broken down into four basic
sections.

1) Basic initialiation: Initializes memory locations that
are not ever required to be re-initialized. Examples are
expanding the cos/sine tables, initializng certain buffer
pointers and initializing various gain control and
demodulation values.

2) IF initialization: Initializes memory locations that
are dependent upon which IF BW is selected. Examples are
filter coefficients and control values which "program" the
IF decimation and interpolation. NOTE: Whenever a new IF
BW is specified, the DSP56001 re-initializes itself and
"re-programs'" the algorithm starting at this point.
Because of this, there are certain DSP56001 registers that
are also reset at the beginning of the IF initialization.

3) Detection Mode Initialization: Initializes memory
locations that are dependent upon which detection mode is

selected. Examples are the control values which select
the demodulation routine itself, control values which
control the audio interpolation, and demodulation

attenuation values.

4) I/0 Initialiation: Initializes the DSP SSI Port as well
as the dedicated address pointers which are used by the
I/0 interrpt service routines. It is at the end of this
initialization that control is transferred to the wait
loop.

All four sections of initialization are executed after a
hardware reset to the DSP56001. Sections 2) through 4)
are executed after a new IF bandwidth is selected.
Incidentally, the HOST processor is required to initiate a
new IF bandwidth even if 3just the detection mode is
changed. This is because some of the detection modes
require a nontrivial "re-programming" of the algorithm.

2.2 Input

The 1lnput data samples to the DSP56001 come through the



SSI Port in the following manner. The actual data samples
({100Khz rate) are interleaved with zero-valued data
samples (100Khz rate). This gives a combined input
interrupt rate of 200Khz. The actual-data/zero-data pair
make up a frame of data (two words per frame). Each data
word in the frame generates an interrupt to the DSPS56001
at which time it is loaded into an input FIFO (x: memory).
The accompanying status word is also loaded into a
parallel y: memory location. Through proper
initialization, the actual data always goes into known
locations in the FIFO. The zero data goes into the
alternating locations.

Due to the nature of the processing that follows
(decimation by 4), it makes sense to wait until four data
samples are available. The wait loop accomplishes this by
checking a flag in the status word (y: memory) which is
parallel to where it knows the fourth data word
(X: memory) will be stored in the FIFO. When the flag is
set, the wait loop jumps to a subroutine called four_avail
which will process the four samples. Before any signal
processing occurs, the subroutine clears the present
"fourth word" status flag and stores the next '"fourth
word" address to be used upon returning to the wait loop.

3 Frequency Translation to Baseband

After input FIFO management, the initial processing that
is performed by the four avail routine is RF gain control
and noise blanking. These functions will be covered later
under Special Functions. Suffice it to say here that
these processes do not alter the actual execution or the
functional operation of the following stages.

The frequency translation to baseband (Fig. 1 - Sh. 1, and
Fig. 9) is a complex heterocdyning operation which
generates a baseband in-phase (I) and quadrature (Q)
signal. The process is merely to multiply the real signal
by a complex exponential with a frequency equal to the
input center frequency (25Khz). Because the translation
frequency is 1/4 of the sampling rate (fs), the
multiplying complex exponential has alternating zeroces in
beth 1its real and imaginary components. This fully
eliminates 1/2 of the data that the following
decimation by 4 filter has to process.

Since the translated signal gets decimated by four, each
coefficient of the decimation by 4 filter is only ever
multiplied by a positive one, or else only ever multiplied
by a negative one from the fs/4 complex exponential. This
means the fs/4 complex exponential can be absorbed into
the decimation by 4 filter coefficients.



2.4 Decimation by 4

The decimation by 4 (Fig. 1 - Sh. 1, Fig. 8, and Fig. 9)
is combined with the fs/4 translation as described above.
The net result of both of these processes is a complex
signal which is centered at baseband and has a sampling
rate of 25Khz. Essentially, for every four samples into
the input FIFO, there is one sample generated at this
stage of processing. The decimation filter is a low pass
filter which '"clears out" spectral space so there are no
significant components to alias into the baseband when
three out of four samples are discarded.

Because the fs/4 translation is applied to the data,

thereby <creating alternating zeros, calculating the
decimated by 4 I signal requires only the even
coefficients of the filter. Likewise, calclating the

decimated by 4 Q signal requires only the odd coefficients
of the filter.

S Pine Tuning

Immediately following the fs/4 translation and
decimation by 4, the 1Hz fine tuning occurs (Fig. 1 -
Sh. 1). This is accomplished by multiplying the I and Q

signal by a complex exponential which results in the
required complex fregency translation. One Hz tuning at a
25Khz sampling rate requires a 25,000-point cos/sine
lookup table (LUT). Since this amount of memory was
prohibitively high, the <cos/sine data points are
calculated by using the trig identities

cos (A+B)
sin(A+B)

cosA*cosB - sinA*sinB
sinA*cosB + cosA*sinB

nu

where A is a coarse resolution angle and B is a fine
resolution angle. The angle A is looked up from a
3125-point full cycle cos/sine table The resolution is
(2*%pi) /3125 radians. The angle B is looked up from an
8-point table which contains a sector ranging from 0 to
7*(2*pi) /25000 radians. The resolution is (2*pi)/25000
radians. Note the fine resolution 8-point table is only a
sine table since the following approximations can be made
with relatively little loss in accuracy.

cos(A+B) = cosA - sinA*sinB
sin(A+B) = sinA + coOsA*sinB

This approximation replaces cos(small angle) with unity
which obviates the requirement for a fine cos LUT.

One final comment about the cos/sin LUTs pertains to how
they are downloaded out of EPROM. To save valuable EPROM



space, only the 3125-point cos table 1s stored. The
3125-point sin table is calclated from the cos table by
using linear interpolation (see Motorola APP NOTE, Digital
Sine Wave Snthesis). A direct copy from the cos table
with a quarter wave shift is not feasible because the
3125-point table cannot be evenly divided into fourths.
Linear interpolation results in much more accuracy than
the constant cos/sin phase mismatch that would result fron
a direct copy.

6 Decimation by 2 Stages

This is the point where the algorithm becomes
"programmable" as a function of which IF BW is selected.
Up until now the processing is the same regardless of
which IF BW is selected. As narrower BWs are selected,
the sampling rate must be reduced to achieve reasonable IF
filter lengths. The possible reduced sampling rates below
the maximum 25Khz rate are 12.5Khz, 6.25Khz, 3.125Khz,
1.5625Khz and 0.78125Khz. The 16Khz IF BW uses no stages
of decimation by 2 (fs=25Khz) while the 300 Hz IF BW uses
all five stages (fs=0.78125Khz).

All the decimation by 2 filters (Fig. 1 - Sh. 2) are
halfband filters. Because of their frequency response,
halfband filters are a natural choice for sampling rate
changes by two. They’‘re also attractive because
computational savings can be obtained due to the
zero-valued coefficients (see Interpolation and Decimaticn
of Digital Signals - A Tutorial Review). Stages 2 through
5 must all be the same halfband filter while Stage 1 can
be an independent halfband filter if so desired. For now,
however, stage 1 uses the same halfband filter as stages 2

through 5. Only stage 1 can be "programmable" since it
the only decimation by 2 filter that might be worth
optimizing. That is, the other decimation by 2 filters

occur at a low enough sampling rate that their length is
not extremely critical.

It 1is important to understand the sequence of the
execution of the decimation by 2 filters (this also
applies to the interpolation by 2 filters). If the
selected IF BW requires 3 stages of decimation by 2, stage
1 1s executed every other 25Khz sample, stage 2 is
executed every fourth 25Khz sample and finally stage 3 is
executed once for every eight 25Khz samples. This
execution order is controlled by looking at the address of
the the particular buffer that the decimation by 2 filter
"feeds". Whether the address is odd or even can be used
to determine if the next stage of decimation should be
exected. For this reason, the length of the buffers that
the decimation by 2 filters store their results to must be
even.



After every stage of decimation by 2, the program either
executes the next decimation by 2 stage, Jjumps to a
corresponding interpolation by 2 stage, or jumps to the
minimum rate processing. The jump to the minimum rate
processing is made if the desired sampling rate has been
achieved with the just run decimation by 2 filter.

2.7 Minimun Rate Processing

Minimum rate processing (Fig. 1 - Sh. 2) is all the
processing that occurs at the lowest possible decimated
sampling rate. This sampling rate is achieved by running
the approprlate number of decimation by 2 stages. The
three main processes that must be executed at this
sampling rate are IF filtering, Internal Gain Control, and
Democdulation (AM, FM, ISB). The detection modes USB, LSB,
and CW are special cases where the detection is really
carried out at a higher sampllng rate. These detection
modes will be addressed in the section on Special
Demodulation Modes.

2.7.1 IF Filtering

The IF filter is simply a low-pass FIR filter that is
run at the lowest possible sampling rate. This is the
bandwidth determining filter in the system. The
appropriate filter coefficients are downloaded from
external data memory 1in the IF dependent section of
initialization.

2.7.2 Internal Gain Control

The internal gain control (IGC) (Fig. 2) consists of the
AGC mechanism as well as the manual gain implementation.

The heart of the IGC is a feedback loop which integrates
an error signal and applies more or less gain
accordingly. The feedback 1loop is always operative
regardless of AGC/Manual mode. If AGC is selected, the
gain value that is "ramped" to by the integrator and
then modified by the AGC processing, is allowed to

multiply the "thru" complex IF signal. The "“thru"
complex IF signal is the signal that goes on tho be
demodulated. If Manual mode is selected, the computed

AGC gain value is overridden by the manual gain value.

Feedba 4

The error signal is calclated by comparing the incoming
IF signal to a fixed setpoint. The setpoint that
(I**2+Q**2) is compared to is 12 dB below the maximum



DSP fractional representation. The error signal is
filtered (lst order, fc=500Hz) and decimated before it
is fed to the integrator. Since the rate of gain
control can be slower than the minimum data sampling
rate, this allows for a reduction of the computational

burden. If the incoming IF signal 1is below the
setpoint, a positive error signal is created and the
integrator ramps up. The increasing numerical result

from the integrator translates into a numerically higher
address into the gain LUT which puts more gain into the
IF "loop" signal. The IF "loop" signal is the IF signal
used in the feedback loop. In a similar fashion, the
integrator can cut back on the gain that is applied to
the signal. Ultimately, the integrator "finds" the
appropriate entry in the gain table which causes the
set-point to be matched. This process occurs whether
Manual or AGC operation is selected. A fallout of this
approach 1is that the integrator will be directly
proportional (via a negative constant) to the signal
strength coming out of the IF filter. This fact will be
used anytime the signal strength is required.

AGC processing

The AGC circuitry works by comparing the output of the
integrator (a relatively fast signal) to a low-pass
filtered version of the integrator. The cutoff
frequency of the low-pass filtering depends on whether
fast or slow AGC is selected. Since there is a bias of
1.5 dB built into the comparison, the gain will track
the average signal strength (low-pass filter output)
unless a larger than average signal comes on rapidly.
This will cause the integrator to "win out" in the
comparison thus cutting back the gain on the rapidly
occuring signal. When the integrator output dces exceed
the filter output, the integrator value (adjusted by the
1.5 dB bias) is then "jammed" into the low-pass filter
output. This allows the filter to latch the gain level
mandated by the strong signal. This combination
integrator/low-pass filter with the latching mechanism
accomplishes true fast-attack gain control relatively
independently of the duration of the impinging large
signal. Note the low-pass filtering and compariscn
process does not impact the feedback control loop. This
means the signal strength estimate (integrator output)
is independent of the AGC fast/slow setting.

diti ] "

1) The gain is applied through the use of a coarse and a
fine lookup table. Each coarse LUT entry represents a
20*log2 = 6 dB step while the fine LUT represents a



20*1og2/128 dB step. These tables are detailed 1in
Fig. 1l1l.

2) The variable xs_atten is used in the manual mcde when
the gain LUTs can not generate enough attenuation.

3) The variable rf_gain_comp is a means of compensating
for the front end analog RF Gain Control. 1In its steady
state condition, the amount of gain represented by
rf_gain_comp equals the amount of RF attenuation that is
applied at the front end.

4) There are three limiting processes shown on Fig. 2.
They are:

The integrator is upper bounded so it doesnt ramp off
and overflow the fractional capabilities of the
machine. This would be the case when the locop cant
bring the signal 1level up to the setpoint. The
integrator is lower bounded according to the maximum
value that rf gain_comp can attain. This is detailed
in Fig. 13.

The value Pk+rf_gain_comp (Fig. 2) is limited so the
coarse multiply doesnt overflow the DSP hardware.

The value Gk+rf_gain_comp or MKk+rf_gain_comp (Fig. 2)
is limited so noise will only be brought up by the AGC
to within about 10 dB of the setpoint.

All numerical values that translate into LUT addresses

are bounded on the lower end so legitimate LUT addresses
are always maintained.

2.7.3 Demodulation - AM, FM, ISB
AM Demodulation

The AM demodulation routine is designed to demodulate
standard AM signals (i.e. double sideband signals with a

carrier). It is a non-synchronous detection that
calculates the magnitude of the basebanded complex
signal. Since the <carrier 1is removed through
translation to baseband, the magnitude of the (I,Q)
vector 1is a direct measure of the envelope, or

equivalently, the modulating signal.

The magnitude of the vector is ([I*#*2+Q**2])*¥%(1/2).
Since square roots are difficult to calculate on the
DSP56001, the following approach is used. (See the
program for details.) The vector is rotated until it is
in the first quadrant within 45 degrees of the real
axis. Call this vector (Il1,Ql). Rotate (I1,Q1) 45

10



degrees through the real axis. Call this new vector
(I2,Q2). A good approximation (to within
+-0.46 degrees) for the angle of (I1,Ql) is then
[Ql/(Q1-Q2) | *45 degrees. This approximation is based on
the fact that the sine function is reasonably linear for
angles of this size. Once the angle of (I1,Ql) is
known, it 1s rotated by that amount. The real part of
the resulting vector is the magnitude of the (I1,Ql)
vector. In addition to the error introduced by the
linear sine approximation, the above indicated division
is only performed to S5 bits of accuracy. This will
result in a maximum error in the [(Q1/(Q1-Q2)]*45
calculation of -1.41 degrees (this could probably be
changed to +-0.703 degrees by phase shifting the
32-point AM phase lookup table by 0.703 degrees - the
first vector in the table would be
(cos(.703 degrees),sin(.703 degrees)) instead of
(cos(0),sin(0)])] ). In the worst case scenario, the two
error sources could add to give an instantaneous (i.e on
a particular sample) error of -1.87 degrees. This
translates into a magnitude error component that is -
65 dB down from the actual magnitude of the (I,Q)
vector. The average performance will be consideraby
better since the error is a function of the actual phase
of the vector and most samples will not exhibit this
maximum error. Note that changing the above phase error
from -1.41 to +-0.703 degrees would improve the maximum
magnitude error from -65dB to -73dB.

FM Demodulation
The process of demodulating FM is quite close to that
for demoduating AM. Instead of calculating the

magnitude of the (I,Q) vector, an approximation for the
instantaneous rate of rotation of the vector is
calclated. If the instantaneous frequency of the FM
modulated signal is higher than the center frequency,
the basebanded quadrature signal will rotate in a
positive direction around the unit circle. Negative
rotation results when the instantaneous frequency of the
FM signal 1is below the center frequency. The
instantaneous rate of rotation of the vector is
equivalent to the instantaneous frequency (and therefore
the modulating signal or information) of the received
FM-modulated signal.

The instantaneous rate of rotation of the vector is the
time derivative of the phase of the vector. The
derivative of the phase is approximated by the
difference of the phase between two sample vectors. The
difference must be calculated as a modulo(2+pi)
subtraction to avoid discontinuities at the 0,2#%pi
boundary on the unit circle.

11



The phase of each vector is calculated using the exact
same technique that was used in the AM detection mode.
The only difference is the accuracy of the calculated
phase. In FM, the vector 1is rotated into the first
22.5 degree sector versus the 45 degree sector. This
improves the maximum approximation error from
+=0.46 degrees to +-0.056 degrees. Accordingly, the
Q1/(Q1-Q2) division 1is calculated to 8 bits accuracy
versus 5 bits. This will result in a maximum error in
the [Ql1/(Ql1-Q2)]*22.5 calculation of -0.088 degrees.
The worst case scenario again would be the summation of
the two errors, or -0.144 degrees, Since the FM is
calclated from the difference of two phases, the worst
case error would be (+0.056-(-0.144)), or 0.2 degrees.
Like the AM case, the average error would be somewhat
lower.

ISB Demodulation

The ISB demodulation (Fig. 1 - Sh. 2) is really a
special case that doesnt fit into the normal IF
filtering structure or the audio interpolation
structure. This is because there are two independent
channels of audio data. As with USB, LSB, and CW
detection, the detected audio is merely the IF but
translated to baseband. The ISB detection mode works as

follows. The filtered IF signal 1is calculated by
complex-translating the basebanded IF by both +-1800 Hz.
This creates two signals, an upper and a lower. Each

signal is decimated by two, 3.2Khz-IF-filtered,
interpolated by two, and complex translated 1800 Hz back
to its original spectral position. The real part of
these two signals represents the twe independent audio
signals. The summation of the two complex signals
represents the complex filtered IF. The summed signal,
which is at the minimum sampling rate (12.5Khz. in this
case), goes to the internal gain control (IGC) and then
teo the IF interpolation. The ISB demodulator takes the
audio signals (the real part of the independent complex
signals) and adjusts them by the gain values (derived
previously from the IGCQ) and interpolates each
independent signal by four to 50kKhz. The two audio
signals are multiplexed into a 100Khz. data stream to be
output over the SSI Port.

2.8 Interpolation by 2 Stages (IF and Audio)

The interpolation by 2 stages consist of the IF

interpolation and the audio interpolation. The audio
interpolation, if selected, is forced to execute in the
same order as the IF interpolation. That is, if IF

12



interpolation stage 3 exectes, audio interpolation stage 3
would execute.

The interpolation by 2 stages are very similar in concept
to the decimation by 2 stages except they increase the
sampling rate by 2 instead of decreasing it by 2. The
interpolation is more or less a mirror of the decimation.
For every stage of decimation that is run there is a
corresponding stage of interpolation that is run. This
being the case, the execution sequence of the IF
interpolation by 2 stages is dictated by which
decimation by 2 stages are run.

The interpolation by 2 filters are the same halfband
filters that are used in the decimation by 2 stages.
Again, the stage 1 filter is programmable, but for now it
uses the same halfband filter that is used in stages 2
thru 5.

9 Interpoclation by 4 (IF and Audio)

The interpolation by 4 (Fig. 1 - Sh. 4, Fig. 8, and
Fig. 10) also consists of the IF interpolation and the
audio 1interpolation. The audiec interpolation is
programmable depending upon which detection mode is
selected. There is no audio interpolation by 4 in this
section if ISB mode is selected since the ISB demodulator
handles 1its own audio interpolation. If CW mode is
selected, a special routine is used in place of the audio
interpolation by 4. This 1is because the BFO translation
represents unique processing that dcesnt fit into the
standard audio interpolation by 4 structure. The AM, FM,
USB, LSB, however, all use the standard audio
interpolation by 4 structure.

The IF interpolation by 4 is conceptually very similar to
the decimation by 4. It can take advantage of the fs/4
up-translation just as the decimation by 4 took advantage
of the fs/4 down-translation. Recall that fully one half
of the data values become zero when mnultiplying by a
complex exponential with a normalized frequency of one
fourth.

The interpolation by 4 process (whether it applies audio
or IF data) effectively takes one 25Khz sample point,
inserts three zero data samples between it and the
previous 25Khz sample point, and then passes the resulting
sequence through the low-pass filter. It becomes obvious
from the looking at the weighted sum that every fourth
filter coefficient is all that is required to calculate a
given interpolated output. Basically, for each 25Khz
sample 1in, there are four interpolated outputs, each
requiring a different subset of the interpolation filter’s

13



coefficients. The final sampling rate is 100Khz.

2.10 Frequency Translation to 25Khz

The frequency translation from baseband to 25Khz (Fig. 1 -
Sh. 4, and Fig. 10) is exactly the same as the translation
from 25Khz to baseband except the fs/4 complex exponential
rotates in the opposite direction. In this case, only the
real component is calclated since a real output is
required. The output is the filtered IF (filtered as a
baseband signal with a low-pass filter) centered at its
original center frequency of 25Khz and with a sampling
rate of 100Khz.

As mentioned in the section above, the fs/4 translation
frequency reduces the computational burden by a factor of
two since half the data values of the fs/4 exponential are
zero. Again, as with the decimation by 4, the signs of
the translating fs/4 sequence can be incorporated into the
interpolation by 4 filter. This is possible because the
sampling rate change is by four. This means that any
given filter coefficient will always be multiplied by the
same polarity from the fs/4 translating sequence.

2.11 Special Demodulation Modes - USB, LSB, CW
2.12 Output

2.13 Special Punctions

2.12.1 RP Gain Control

2.12.2 Noise Blanking

2.12.3 s8ignal Strength

2.12.4 Squelch

3. UTILITIES

The following is a brief description of the utilities
associated with developing the WJ-8711 DSP code.

3.1 Digital Filter Generation

All the digital filters, except those that are first order
recursive, are FIR filters that were developed using the
Parks-McClellan (PM) algorithm. See Fig. 16 for a
tabulation of the processes required to generate all the
FIR filters.

The input files to the PM program (called fird.exe) all
have a file extension of .i of .f. The output of the PM
program is a coefficient file and a text file. The text
file contains a re-statement of the input parameters and
the computed coefficients while the coefficient file
contains the raw computed coefficients in floating point
format.

14



The PM coefficient file is processed by either fmtflt.exe
or fmtflt _h.exe, the latter being used for the halfband
filter. These programs scale the data so the sum of the
coefficients equals one (or one-half in the case of
fmtflt_h.exe) and format the data into a Motorola assembly
file. In some cases, this is the end result. In the
other cases (see Fig. 16), additional processing is
required to modify the coefficient files (e.g. rearrange
the coefficients, change signs, and/or put gain in the
coefficients). This additional processing is effected by
the program cofmod.exe. In some cases, the output file is
the same name as the input file. This requires the use of
a temporary file to receive the output.

3.2 EPROM Generation

See Fig. 18 for details on the present format of the
EPROM. This will change when the new hardware becomes
available

The following steps should be used to create an EPROM:

1) Create a downloadable Motorola file (.lod file) by
using the batch file makehfep.bat. This batch file will
assemble and link all the required files, including the
tables from cstb.asm, and create a file called hfep.lod.
There is some code that links in at absolute address
p:$700. This must be observed when the program is
expanded. There is relative p: code that could "grow"
into the absolute p: space. This can be circumvented by
expanding p:SRAM to 16K from B8K. See the relevant
comments in the 8711BUG section.

2) Run mrgld.exe, specifying dspboot.lod, hfep.lod, and
an output filename. This will create a composite load
file.

3) Run srec.exe to produce the Motorola S-Records that
the EPROM programmer requires.

4) Presently (before the new hardware), the S-Records
start at $8001. This offset must be considered when
burning a 32K X 8 EPROM ($8000 maps to $0000). The
S-Records map directly when burning a 64K X 8.

3.3 8711BUG (Motorola DSPBUG)

This 1is a modified version of the Motorola program

dspbug.asn. It allows the programmer to download
developmental .lod files over the RS-232 interface using a
dumb-terminal emulator such as VTERNM. The files are

15



typically created using makehfep.bat or else makehf.bat.
The only difference is that makehf.bat does not include
the sin/cos or ADG gain tables. 1Its output file is called
hf.lod vs. hfep.lod. This can save download time if the
tables have already been downloaded and power to the unit
has not been turned off.

8711bug resides in external p:SRAM at $0800. Because of
this, programs that are downloaded can not occupy the
external program memory above S$07ff. Eventually, it may
be desirable to have a developmental unit with 16K of
external p:SRAM so 871lbug can reside at a higher address
and allow larger programs to be downloaded.

If the 871lbug EPROM is installed in the DSP EPROM socket,
the HOST will display a DSP error on the front panel and
try to reset the DSP three times. After that, the HOST
will simply wait forever for the DSP to set the HF3 flag
indicating it’s ready to receive Command Vectors.
Operation will procede as normal as soon as a program is
downloaded over the RS=-232 interface and told to execute.
Note that the downlcaded program must set HF3.

The DSP BITE tests will perform as normal even with the
8711bug EPROM installed.

le



